Friday, 18 August 2017

ชี้แจง เคลื่อนไหว เฉลี่ย Mathematica


ค่าเฉลี่ยเลขประจำตัว EMA - EMA ลดลงค่าเฉลี่ยเลขหมาย EMA 12 และ 26 วันเป็นค่าเฉลี่ยระยะสั้นที่ได้รับความนิยมมากที่สุดและใช้ในการสร้างตัวบ่งชี้เช่น MACD และค่าร้อยละ (PPO) โดยทั่วไปแล้ว EMA 50 และ 200 วันใช้เป็นสัญญาณของแนวโน้มในระยะยาว ผู้ค้าที่ใช้การวิเคราะห์ทางเทคนิคพบค่าเฉลี่ยเคลื่อนที่ที่มีประโยชน์และลึกซึ้งเมื่อใช้อย่างถูกต้อง แต่สร้างความหายนะเมื่อใช้ไม่ถูกต้องหรือถูกตีความผิด ค่าเฉลี่ยเคลื่อนที่ทั้งหมดที่ใช้กันโดยทั่วไปในการวิเคราะห์ทางเทคนิคเป็นไปตามลักษณะของตัวชี้วัดที่ล่าช้า ดังนั้นข้อสรุปที่ได้จากการนำค่าเฉลี่ยเคลื่อนที่ไปเป็นกราฟตลาดหนึ่ง ๆ ควรเป็นการยืนยันการเคลื่อนไหวของตลาดหรือเพื่อบ่งชี้ถึงความแข็งแกร่ง บ่อยครั้งเมื่อถึงเวลาที่เส้นค่าเฉลี่ยเคลื่อนไหวได้เปลี่ยนไปเพื่อสะท้อนการเคลื่อนไหวที่สำคัญในตลาดจุดที่เหมาะสมที่สุดของการเข้าสู่ตลาดได้ผ่านไปแล้ว EMA ช่วยลดปัญหานี้ได้บ้าง เนื่องจากการคำนวณ EMA ให้น้ำหนักมากขึ้นกับข้อมูลล่าสุดจึงทำให้การดำเนินการด้านราคาแย่ลงและตอบสนองได้เร็วขึ้น นี่เป็นที่พึงปรารถนาเมื่อใช้ EMA เพื่อรับสัญญาณการซื้อขาย การตีความ EMA เช่นเดียวกับตัวบ่งชี้ค่าเฉลี่ยเคลื่อนที่ทั้งหมดพวกเขาจะเหมาะกับตลาดที่มีแนวโน้มมากขึ้น เมื่อตลาดอยู่ในขาขึ้นที่แข็งแกร่งและยั่งยืน เส้นแสดงตัวบ่งชี้ EMA จะแสดงแนวโน้มขาขึ้นและทางกลับกันสำหรับแนวโน้มขาลง ผู้ค้าระมัดระวังจะไม่เพียง แต่ใส่ใจกับทิศทางของเส้น EMA แต่ยังสัมพันธ์ของอัตราการเปลี่ยนแปลงจากแถบหนึ่งไปอีก ตัวอย่างเช่นในขณะที่การดำเนินการตามราคาของขาขึ้นที่แข็งแกร่งจะเริ่มแผ่ออกและพลิกกลับอัตราการเปลี่ยนแปลงของ EMA จากแถบหนึ่งไปยังอีกส่วนหนึ่งจะเริ่มลดลงไปจนกว่าจะถึงเวลาดังกล่าวที่บรรทัดตัวบ่งชี้จะราบเรียบและอัตราการเปลี่ยนแปลงเป็นศูนย์ เนื่องจากผลกระทบที่ปกคลุมด้วยวัตถุฉนวนถึงจุดนี้หรือแม้กระทั่งไม่กี่บาร์ก่อนการดำเนินการด้านราคาน่าจะได้กลับรายการไปแล้ว ดังนั้นจึงเป็นไปได้ว่าการสังเกตการลดอัตราการเปลี่ยนแปลงของ EMA ที่สอดคล้องกันอาจเป็นตัวบ่งชี้ที่สามารถช่วยป้องกันภาวะที่กลืนไม่เข้าคายไม่ออกซึ่งเกิดจากผลกระทบที่เกิดจากการเคลื่อนที่โดยเฉลี่ย การใช้ EMA ทั่วไปของ EMA มักใช้ร่วมกับตัวบ่งชี้อื่น ๆ เพื่อยืนยันการย้ายตลาดที่สำคัญและเพื่อวัดความถูกต้อง สำหรับผู้ค้าที่ค้าขายระหว่างวันและตลาดที่เคลื่อนไหวอย่างรวดเร็ว EMA จะสามารถใช้งานได้มากขึ้น ผู้ค้ามักใช้ EMA เพื่อหาอคติในการซื้อขาย ตัวอย่างเช่นหาก EMA ในแผนภูมิรายวันแสดงให้เห็นถึงแนวโน้มที่แข็งแกร่งขึ้นกลยุทธ์การค้าระหว่างวันอาจเป็นการค้าเฉพาะจากด้านยาวบนแผนภูมิระหว่างวัน ค่าเฉลี่ยเคลื่อนที่ที่คำนวณได้ค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยอยู่ที่มากกว่าการศึกษาลำดับของตัวเลขตามลำดับ ผู้ปฏิบัติงานช่วงต้นของการวิเคราะห์อนุกรมเวลาเป็นเรื่องที่เกี่ยวข้องกับตัวเลขลำดับเวลาของแต่ละชุดมากกว่าที่พวกเขามีอยู่กับการแก้ไขข้อมูลดังกล่าว การแก้ไข ในรูปแบบของทฤษฎีความน่าจะเป็นและการวิเคราะห์มามากในภายหลังเป็นรูปแบบการพัฒนาและ correlations ค้นพบ เมื่อเข้าใจเส้นโค้งที่มีรูปร่างต่างๆและเส้นถูกวาดตามลำดับเวลาในความพยายามที่จะคาดเดาที่จุดข้อมูลอาจจะไป ตอนนี้ถือว่าเป็นวิธีการขั้นพื้นฐานที่ใช้โดยนักวิเคราะห์ด้านเทคนิคในปัจจุบัน การวิเคราะห์แผนภูมิสามารถโยงย้อนกลับไปถึงศตวรรษที่ 18 ในประเทศญี่ปุ่นได้อย่างไร แต่อย่างไรและเมื่อใดที่ค่าเฉลี่ยความเคลื่อนไหวเมื่อถูกนำมาประยุกต์ใช้กับราคาในตลาดเป็นเรื่องลึกลับ เป็นที่เข้าใจกันโดยทั่วไปว่าค่าเฉลี่ยเคลื่อนที่แบบธรรมดา (SMA) ใช้มานานก่อนค่าเฉลี่ยเคลื่อนที่แบบเสวนา (EMA) เนื่องจาก EMA สร้างขึ้นจากกรอบ SMA และ SMA continuum สามารถเข้าใจได้ง่ายขึ้นสำหรับการวางแผนและการติดตาม Simple Moving Average (SMA) ค่าเฉลี่ยเคลื่อนที่ง่ายกลายเป็นวิธีที่ต้องการในการติดตามราคาตลาดเนื่องจากสามารถคำนวณได้ง่ายและเข้าใจได้ง่าย ผู้ประกอบการตลาดในยุคต้น ๆ ดำเนินการโดยปราศจากการใช้เมตริกแผนภูมิแบบซับซ้อนในการใช้งานในปัจจุบันดังนั้นพวกเขาจึงพึ่งพาราคาตลาดเป็นคำแนะนำ แต่เพียงผู้เดียว พวกเขาคำนวณราคาตลาดด้วยมือและกราฟราคาดังกล่าวเพื่อแสดงแนวโน้มและทิศทางตลาด กระบวนการนี้ค่อนข้างน่าเบื่อ แต่ก็ได้รับการพิสูจน์ว่ามีผลกำไรมากพอสมควรกับการยืนยันการศึกษาเพิ่มเติม ในการคำนวณค่าเฉลี่ยเคลื่อนที่ 10 วันให้เพิ่มราคาปิดของ 10 วันที่ผ่านมาและหารด้วย 10 ค่าเฉลี่ยเคลื่อนที่ 20 วันคำนวณโดยการเพิ่มราคาปิดในช่วง 20 วันและหารด้วย 20 และ อื่น ๆ สูตรนี้ไม่ได้ขึ้นอยู่เฉพาะในราคาปิด แต่ผลิตภัณฑ์เป็นราคาเฉลี่ยของ - เซตย่อย ค่าเฉลี่ยเคลื่อนที่หมายถึงการเคลื่อนไหวเนื่องจากกลุ่มของราคาที่ใช้คำนวณจะย้ายไปตามจุดบนแผนภูมิ ซึ่งหมายความว่าวันเก่าจะลดลงในความโปรดปรานของราคาปิดวันใหม่ดังนั้นการคำนวณใหม่จำเป็นเสมอที่สอดคล้องกับกรอบเวลาของการจ้างงานโดยเฉลี่ย ดังนั้นการคำนวณค่าเฉลี่ย 10 วันโดยการเพิ่มวันใหม่และลดลงวันที่ 10 และวันที่เก้าจะลดลงในวันที่สอง Exponential Moving Average (EMA) ค่าเฉลี่ยเคลื่อนที่เชิงเส้น (Exponential Moving Average - EMA) ค่าเฉลี่ยเคลื่อนที่เชิงตัวเลขได้รับการปรับแต่งและใช้กันอย่างแพร่หลายตั้งแต่ทศวรรษที่ 1960 เนื่องจากการทดลองกับคอมพิวเตอร์ก่อนหน้านี้ EMA ใหม่จะให้ความสำคัญกับราคาล่าสุดมากกว่าในชุดข้อมูลยาว ๆ ซึ่งเป็นค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ย EMA ปัจจุบัน ((ราคา (ปัจจุบัน) - EMA ที่ผ่านมา)) ตัวคูณ X) EMA ก่อนหน้า ปัจจัยที่สำคัญที่สุดคือค่าคงที่ที่ราบเรียบที่ 2 (1N) โดยที่ N จำนวนวัน EMA 10 วัน 2 (101) 18.8 หมายถึง EMA 10 ช่วงน้ำหนักล่าสุด 18.8 วัน EMA 20 วัน EMA 9.52 และ 50 วัน EMA 3.92 ในวันล่าสุด EMA ทำงานโดยการชั่งน้ำหนักความแตกต่างระหว่างราคาในงวดปัจจุบันกับ EMA ก่อนหน้าและเพิ่มผลการค้นหาไปยัง EMA ก่อนหน้านี้ ระยะเวลาที่สั้นกว่าจะมีการใช้น้ำหนักมากขึ้นกับราคาล่าสุด เส้นขีดโดยการคำนวณเหล่านี้จุดจะพล็อตเผยให้เห็นเส้นที่เหมาะสม เส้นที่ติดตั้งอยู่เหนือหรือต่ำกว่าราคาตลาดบ่งชี้ว่าค่าเฉลี่ยเคลื่อนที่ทั้งหมดเป็นตัวชี้วัดที่ล่าช้า และใช้เป็นหลักสำหรับแนวโน้มดังต่อไปนี้ พวกเขาไม่ได้ทำงานได้ดีกับตลาดช่วงและช่วงเวลาของความแออัดเนื่องจากสายการประกอบไม่ได้แสดงถึงแนวโน้มเนื่องจากการขาดความชัดเจนสูงขึ้นหรือต่ำกว่าที่ต่ำกว่า นอกจากนี้สายกระชับยังคงมีค่าคงที่โดยไม่ต้องมีคำแนะนำ แนวรับที่เพิ่มขึ้นด้านล่างของตลาดมีความหมายยาวนานในขณะที่สายการผลิตที่พอดีกับขาขึ้นเหนือตลาดหมายถึงระยะสั้น วัตถุประสงค์ของการใช้ค่าเฉลี่ยเคลื่อนที่แบบง่ายๆคือการวัดและแนวโน้มโดยการทำให้ข้อมูลมีความเรียบโดยใช้วิธีการหลายกลุ่มของราคา มีแนวโน้มที่จะได้รับการคาดการณ์และคาดการณ์ไว้ สมมติฐานคือการเคลื่อนไหวของแนวโน้มก่อนหน้าจะดำเนินต่อไป สำหรับค่าเฉลี่ยเคลื่อนที่แบบง่ายๆแนวโน้มระยะยาวสามารถพบได้และง่ายขึ้นกว่า EMA โดยมีข้อสันนิษฐานที่สมเหตุสมผลว่าสายพอดีจะแข็งแกร่งกว่าเส้น EMA เนื่องจากมุ่งเน้นไปที่ราคาเฉลี่ย EMA ใช้เพื่อจับภาพการเคลื่อนย้ายแนวโน้มที่สั้นลงเนื่องจากมุ่งเน้นไปที่ราคาล่าสุด โดยวิธีนี้ EMA ควรจะลดความล่าช้าใด ๆ ในค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายเพื่อให้สายกระชับที่จะกอดราคาใกล้กว่าค่าเฉลี่ยเคลื่อนที่ที่เรียบง่าย ปัญหาที่เกิดขึ้นกับ EMA คือ: มันมีแนวโน้มที่จะแบ่งราคาโดยเฉพาะอย่างยิ่งในช่วงตลาดที่รวดเร็วและช่วงเวลาของความผันผวน EMA ทำงานได้ดีจนกว่าราคาจะพังทลายลง ในช่วงที่ตลาดมีความผันผวนสูงขึ้นคุณสามารถพิจารณาเพิ่มระยะเวลาเฉลี่ยของค่าเฉลี่ยเคลื่อนที่ได้ หนึ่งสามารถเปลี่ยนจาก EMA เป็น SMA เนื่องจาก SMA ทำให้ข้อมูลดีขึ้นกว่า EMA เนื่องจากมุ่งเน้นไปที่วิธีการในระยะยาว ตัวบ่งชี้ที่เป็นตัวบ่งชี้ความเป็นไปได้ในการไต่ระดับต่อเนื่อง หากราคาพุ่งขึ้นต่ำกว่าแนวเส้น 10 วันที่มีแนวโน้มสูงขึ้นโอกาสดีที่แนวโน้มขาลงอาจลดลงหรืออย่างน้อยตลาดอาจรวมตัวกัน หากราคาพุ่งขึ้นเหนือเส้นค่าเฉลี่ย 10 วันในระยะสั้น แนวโน้มอาจลดลงหรือรวมกัน ในกรณีเหล่านี้ให้ใช้ค่าเฉลี่ยเคลื่อนที่ 10 และ 20 วันพร้อมกันและรอให้เส้น 10 วันข้ามด้านบนหรือด้านล่างเส้น 20 วัน ซึ่งจะเป็นตัวกำหนดทิศทางระยะสั้นสำหรับราคาต่อไป สำหรับระยะยาวให้ดูค่าเฉลี่ยเคลื่อนที่ 100 และ 200 วันสำหรับทิศทางในระยะยาว ตัวอย่างเช่นหากใช้ค่าเฉลี่ยเคลื่อนที่ 100 และ 200 วันหากค่าเฉลี่ยเคลื่อนที่ 100 วันต่ำกว่าค่าเฉลี่ย 200 วันจะเรียกว่าเครื่องหมายการเสียชีวิต และเป็นหยาบคายมากสำหรับราคา ค่าเฉลี่ยเคลื่อนที่ 100 วันที่ข้ามค่าเฉลี่ยเคลื่อนที่ 200 วันเรียกว่าไม้กางเขนสีทอง และเป็นที่พอใจมากสำหรับราคา ไม่ว่าจะเป็น SMA หรือ EMA เนื่องจากทั้งสองแบบเป็นตัวบ่งชี้แนวโน้ม โดยเฉพาะในระยะสั้นที่ SMA มีการเบี่ยงเบนเล็กน้อยจากคู่สัญญา EMA บทสรุป Moving averages เป็นพื้นฐานของการวิเคราะห์แผนภูมิและลำดับเวลา ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายและค่าเฉลี่ยเคลื่อนที่ที่เป็นตัวชี้วัดที่ซับซ้อนมากขึ้นจะช่วยให้เห็นภาพแนวโน้มโดยการทำให้การเคลื่อนไหวของราคาดีขึ้น การวิเคราะห์ทางเทคนิคบางครั้งเรียกว่าศิลปะมากกว่าวิทยาศาสตร์ซึ่งทั้งสองใช้เวลาหลายปีในการควบคุม (เรียนรู้เพิ่มเติมในการสอนการวิเคราะห์ทางเทคนิคของเรา) ประเภทของโครงสร้างค่าตอบแทนที่ผู้จัดการกองทุนป้องกันความเสี่ยงมักใช้ในส่วนของค่าตอบแทนที่เป็นผลการปฏิบัติงาน การป้องกันการสูญเสียรายได้ซึ่งจะส่งผลให้ผู้เอาประกันภัยเสียชีวิต ผู้รับประโยชน์ชื่อได้รับ การวัดความสัมพันธ์ระหว่างการเปลี่ยนแปลงปริมาณที่ต้องการสินค้าและการเปลี่ยนแปลงราคา ราคา. มูลค่าตลาดรวมของหุ้นทั้งหมดของ บริษัท ที่โดดเด่น มูลค่าหลักทรัพย์ตามราคาตลาดคำนวณโดยการคูณ Frexit ย่อมาจาก quotFrench exitquot เป็นเศษเสี้ยวของคำว่า Brexit ของฝรั่งเศสซึ่งเกิดขึ้นเมื่อสหราชอาณาจักรได้รับการโหวต คำสั่งซื้อที่วางไว้กับโบรกเกอร์ที่รวมคุณลักษณะของคำสั่งหยุดกับคำสั่งซื้อที่ จำกัด ไว้ คำสั่ง stop-limit จะมีรายการจุดข้อมูล, ข้อมูลของฉัน เมื่อฉันพล็อตพวกเขาโค้งเป็นขรุขระ ฉันต้องการเรียบโค้งและรักษามุมทั้งสองคม นี่เป็นพล็อตข้อมูลดิบ ฉันได้ลองใช้ตัวกรองผ่านต่ำสำหรับสัปดาห์ แต่เส้นโค้งยังคงไม่ดีมาก เส้นโค้งของฉันมีซิกซ็อกจำนวนมาก ต่อไปนี้คือฟังก์ชันการกรองผ่านต่ำของฉัน หลังจากประเมินโค้ดด้านบนแล้วฉันสามารถทำให้ส่วนโค้งของ zigzag ทั้ง 3 ส่วนแยกกันได้ แล้วฉันก็รวมเอาไว้ ดังที่ฉันกล่าวว่าโค้งยังไม่ดูดีพอ บางส่วนมีการเปลี่ยนแปลงที่ไม่เหมาะสมสิ่งที่ฉันต้องการคืออะไรแบบนี้ซึ่งได้มาจากการวาดรูป :) ฉันเพียงแค่ต้องการใช้เทคนิคการวางแผนของ Mathematica หรือวิธีการอื่น ๆ ที่ให้เส้นโค้งเรียบที่ฉันต้องการ ถาม 10 ต. ค. 14 เวลา 13:04 น. เพียงแค่ข้อคิดเห็นเพิ่มเติมเพื่อเริ่มต้น ฉันจะพยายามติดตามรหัสภายหลังในวันนี้หรือช่วงสุดสัปดาห์ นี่ดูเหมือนจะเป็นงานที่เหมาะสำหรับตัวกรอง Laguerre และน่าจะเป็นตัวปรับตัวอย่างเช่น ตัวกรอง Laguerre เบื้องต้น คุณสามารถหาข้อมูลจำนวนมากเกี่ยวกับเรื่องนี้ทางออนไลน์ได้ ตัวกรอง Laguerre จะปรับชุดข้อมูลตามพหุนาม Laguerre ระยะแรกของการเป็นค่าเฉลี่ยเลขประจำตัวตามด้วยข้อเสนอแนะบางข้อ การทำให้ราบเรียบได้รับการควบคุมโดยค่า alpha factor (alpha สำหรับ Exponential Moving Average) และยังลดระยะเวลาต่อไป อัลฟ่าสามารถนับตั้งแต่ 1 เพื่อติดตามข้อมูลเกือบทั้งหมดเป็น 0 สำหรับการตอบสนองที่ช้ามาก ผลให้ค่าเฉลี่ยถ่วงน้ำหนักของค่าในอดีต ตัวกรองแบบ laguerre แบบปรับตัวจะนำปัจจัย alpha แบบตัวแปรขึ้นอยู่กับตัวกรองที่ติดตามค่า N ที่ผ่านมา ซึ่งจะช่วยให้ตัวกรองสามารถติดตามข้อมูลได้ใกล้เคียงกับตัวอักษรที่เปลี่ยนแปลงในช่วงแกน x ฟังก์ชัน Mathematicas LaguerreL อาจทำให้เรื่องนี้ง่ายมาก จากเอกสาร: ฉันพยายามโพสต์โค้ดบางส่วนในภายหลัง ฉันคิดว่า MovingAverage สามารถทำงานนี้ได้อย่างสมบูรณ์หากเราสามารถควบคุมน้ำหนักให้ทำค่าเฉลี่ยที่ส่วนที่สั่นและทำตามเส้นโค้งของฉันใกล้ ๆ ได้ สองจุดผกผัน อย่างที่คุณเห็นได้ด้วยโปรแกรม GaussianFilter ของ LowpassFilter หรือ Kale มีการเปลี่ยนแปลงที่ไม่เหมาะสมในส่วนที่ถูกต้องของเส้นโค้งโดยที่เส้นโค้งต้นฉบับเรียบหรือดีพอ ndash สามารถ 10 ตุลาคม 14 เวลา 14:14 Heres วิธี ham - fisted ค่อนข้างใช้ GaussianFilter: ครั้งแรกฟังก์ชันกรอง: ฟังก์ชันนี้ใช้ตัวกรอง Gaussian กับข้อมูลทั้งหมดมากกว่าค่า y บางอย่าง เราสามารถใช้งานได้เช่น: การเล่นกับค่าเราสามารถสร้างโปรแกรม Manipulate ง่ายๆได้: ฉันคิดว่า WienerFilter ทำงานได้ดีขึ้น: ตอบ 10 10 14 ที่ 13:52 ขอบคุณคะน้าที่คุณสามารถดูได้ด้วย LowpassFilter หรือ GaussianFilter ของฉัน มีทั้งการเปลี่ยนแปลงที่ไม่เหมาะสมในส่วนขวาของเส้นโค้งที่โค้งเดิมเป็นเรียบหรือดีพอ ฉันคิดว่า WienerFilter ของคุณค่อนข้างดี แต่เรายังสามารถปรับปรุงได้ คุณสามารถ pls โพสต์รหัส WienerFilter ของคุณ ndash ได้ 10 ต. ค. 14 เวลา 14:21 Ixy เพียงแค่แทนที่ GaussianFilter กับ WeinerFilter ndash kale 10 ต. ค. 14 เวลา 14:22 น. คำตอบของคุณ 2017 Stack Exchange, Inc

No comments:

Post a comment